13 research outputs found

    Performance characterization and optimization of mobile augmented reality on handheld platforms

    Full text link
    Abstract — The introduction of low power general purpose processors (like the Intel ® Atom ™ processor) expands the capability of handheld and mobile internet devices (MIDs) to include compelling visual computing applications. One rapidly emerging visual computing usage model is known as mobile augmented reality (MAR). In the MAR usage model, the user is able to point the handheld camera to an object (like a wine bottle) or a set of objects (like an outdoor scene of buildings or monuments) and the device automatically recognizes and displays information regarding the object(s). Achieving this on the handheld requires significant compute processing resulting in a response time in the order of several seconds. In this paper, we analyze a MAR workload and identify the primary hotspot functions that incur a large fraction of the overall response time. We also present a detailed architectural characterization of the hotspot functions in terms of CPI, MPI, etc. We then implement and analyze the benefits of several software optimizations: (a) vectorization, (b) multi-threading, (c) cache conflict avoidance and (d) miscellaneous code optimizations that reduce the number of computations. We show that a 3X performance improvement in execution time can be achieved by implementing these optimizations. Overall, we believe our analysis provides a detailed understanding of the processing for a new domain of visual computing workloads (i.e. MAR) running on low power handheld compute platforms. 1

    Image Statistics and Anisotropic Diffusion

    No full text
    Many sensing techniques and image processing applications are characterized by noisy, or corrupted, image data. Anisotropic diffusion is a popular, and theoretically well understood, technique for denoising such images. Diffusion approaches however require the selection of an "edge stopping" function, the definition of which is typically ad hoc. We exploit and extend recent work on the statistics of natural images to define principled edge stopping functions for different types of imagery. We consider a variety of anisotropic diffusion schemes and note that they compute spatial derivatives at fixed scales from which we estimate the appropriate algorithm-specific image statistics. Going beyond traditional work on image statistics, we also model the statistics of the eigenvalues of the local structure tensor. Novel edge-stopping functions are derived from these image statistics giving a principled way of formulating anisotropic diffusion problems in which all edge-stopping parameters are learned from training data

    Fault modeling for monitoring and diagnosis of sensor-rich hybrid systems

    No full text
    This paper presents a framework for modeling faults in hybrid systems that leads to an efficient approach for monitoring and diagnosis of real-time embedded systems. We describe a fault parameterization based on hybrid automata models and consider both abrupt failures and gradual degradation of system components. Our approach also addresses the computational problem of coping with large amount of sensor data by using a discrete event model of the system so as to focus distributed signal analysis on when and where to look for signatures of interest. The approach has been demonstrated for the on-line diagnosis of a hybrid system, the Xerox DC265 printer.

    Monitoring and Fault Diagnosis of Hybrid Systems

    No full text
    Abstract—Many networked embedded sensing and control systems can be modeled as hybrid systems with interacting continuous and discrete dynamics. These systems present significant challenges for monitoring and diagnosis. Many existing model-based approaches focus on diagnostic reasoning assuming appropriate fault signatures have been generated. However, an important missing piece is the integration of model-based techniques with the acquisition and processing of sensor signals and the modeling of faults to support diagnostic reasoning. This paper addresses key modeling and computational problems at the interface between model-based diagnosis techniques and signature analysis to enable the efficient detection and isolation of incipient and abrupt faults in hybrid systems. A hybrid automata model that parameterizes abrupt and incipient faults is introduced. Based on this model, an approach for diagnoser design is presented. The paper also develops a novel mode estimation algorithm that uses model-based prediction to focus distributed processing signal algorithms. Finally, the paper describes a diagnostic system architecture that integrates the modeling, prediction, and diagnosis components. The implemented architecture is applied to fault diagnosis of a complex electro-mechanical machine, the Xerox DC265 printer, and the experimental results presented validate the approach. A number of design trade-offs that were made to support implementation of the algorithms for online applications are also described. Index Terms—Bayesian mode estimation, data association, hybrid systems, monitoring and diagnosis, printing systems. I
    corecore